
Increasing productivity by combining the Pomodoro
Technique with 2D Idle Collection Games

Ledet Awano
Texas A&M University
400 Bizzell St, College

Station, TX 77843

home01@tamu.edu

Grace Fan
Texas A&M University
400 Bizzell St, College

Station, TX 77843

gracefan@tamu.edu

Brandon Neff
Texas A&M University
400 Bizzell St, College

Station, TX 77843

brando_18@tamu.edu

Charles Wong
Texas A&M University

400 Bizzell St, College Station,
TX 77843

charleswong@tamu.edu

ABSTRACT

Developed as a term project for the Spring 2019 semester of
Computers and New Media at Texas A&M University, Rooted is
an idle collecting game that incorporates principles from the
Pomodoro Technique to enhance player’s productivity when
working or studying. Rooted is a web browser game developed
using HTML5/CSS and JavaScript, designed specifically to avoid
addicting or distracting game mechanics such as loot boxes. In
this paper, we discuss our design decisions in development, the
goals we hoped to accomplish, and how Rooted could be
expanded in the future.

Keywords

Games, game design, game development, web games, zen game,
idle-gaming, collecting games, casual games, indie games,
gamification, games with a purpose, positive computing, positive
gaming, Pomodoro Technique, entertainment, productivity,
rewards, addiction

1. INTRODUCTION
“Rooted” is our team’s 2-dimensional idle-collection game. It
simulates a zen garden setting with an arrangement of decorations
picked by the player. Each decoration can attract a visiting animal.
The game was designed with a goal of accumulation: players gain
money when visitors arrive and then spend money on more
decorations to attract more visitors.

1.1 Game Purpose
The system was designed to be a fun time-management system
that engages the user while also boosting their productivity. The
core component of Rooted and other idle games is waiting time
[9]. Idle game players can be stopped from interacting with the
game during specific periods by using game mechanics such as
automatic progression and slow spawn events. Requiring the
player to wait for the arrival of visitors allowed us to exert control
over the amount of interaction the player could have with the
game in specific windows of time.

By tuning the wait times and dividing the game into stages of
idle-play and idle-wait, we created overall stages of increased or
decreased player attention to the game. The purpose of developing
for this cycle was to follow the overall structure of the Pomodoro
Technique for managing time and breaking down work. Our game
seeks to encourage regular use throughout work times.

2. PROBLEM STATEMENT
Our game is designed to solve both the issues of difficult time
management and distracting games. The primary motivation for
addressing these issues is to find the right intervals to maximize
focus, while minimizing stress from studying with deadlines. In
educational environments, periods of procrastination and extended
work damage overall productivity. Effective studying requires
both freedom from distractions as well as effective time
budgeting. Our overall goal for the product was to create a less
distracting media source that would increase productivity through
regular use.

2.1 Effective Time Management
Effective time managements skills is difficult to achieve since it is
such a complex subject. It is possible that working nonstop for too
long can decrease productivity [10], while smartphones and the
internet can also cause frequent distractions that disrupt
productive work altogether [4]. Some people have developed
techniques to assist in improving productivity and effective time
management; one such technique is known as the Pomodoro
Technique [2]. As shown in Figure 1, the main characteristic of
the technique is cycling working nonstop for 25 minutes followed
by a short 3-5 minute break. Implementation of the Pomodoro
Technique requires a timing system to alert the user to a switch
from work to break. Current approaches involve using a analog
timer or a Pomodoro program. With Rooted, we aimed to
understand feasibility of using a game to run the Pomodoro
cycles.

Figure 1. Illustration of a typical Pomodoro work cycle with
25-minute/5-minute work and relax periods.

2.2 Minimizing Distraction
The other issue we attempt to solve is the problem of games that
are designed to be addicting and distracting. Many modern games,
especially mobile games, incorporate mechanics similar to
gambling to capture player’s attention and entice them to spend

money on microtransactions [1][7]. Over the past several years,
there has been a paradigm shift across the gaming industry as
more and more companies integrate “loot boxes,”
microtransactions, etc., into their games. A loot box is an in-game
item that can be opened for a rare chance of receiving a valuable
item, such as a weapon or cosmetic tweak for in-game characters.
In some games such as ​Overwatch​, loot boxes cost money (Figure
2); in others, loot boxes are freely provided but players must
purchase keys to actually unlock them. Increasingly, many games
are free-to-play and receive all of their revenue from
microtransactions made by players.

Figure 2. “Loot Box” prices from the video game ​Overwatch
(Blizzard Entertainment, 2016).

Some governments have begun regulating these gaming features
as gambling [6]. Our goal was to design a game that worked
against these industry trends by aiming to not be addicting or
distracting, and instead forcing users to take breaks through our
design and gameplay.

2.3 Our Solution
To solve these two problems, we have developed our game as an
idle collecting game that is meant to be played passively. Users
will have a 5 minute window to take actions in the game, such as
purchasing plants and placing them in the garden. At the end of
the 5 minute window, the game goes into an automated state
where no interactions can be made; the game continues to run in
the background as visitors come to the garden and the user earns
currency. During this 25 minute window, the user is supposed to
have a distraction free opportunity to be productive. After the 25
minutes are up, the user can see which animal visitors have come
to the garden and use their newly earned in-game currency to buy
additional plants. Essentially, our game incorporates the
Pomodoro Technique and limits the amount of time the user can
play the game. We have also avoided using any features such as
microtransactions, loot boxes, or excessive push notifications.

3. DESIGN & DEVELOPMENT ISSUES
Throughout the semester of working on this project, our team
encountered a number of issues. In this section, we will overview
which issues were the most challenging for us to overcome and
how they affected our design decisions and development progress.

3.1 Phaser 3
One of the main issues that we encountered in the design of our
application was the use of the Phaser framework. Our original
idea was to use this game building framework that is written in
JavaScript to implement all the design and functionality needed to

have an interactive game. As we began to work on the project we
realized after six hours of working that the framework would not
be compatible for the application we were building. One of the
main reasons that caused this was the lack of documentation that
the framework had. The organization that built the framework had
just build the 3rd edition of that framework and had changed
many of the function calls and implementation details needed to
use the game framework.

With that, as we began to do research and work on the project we
noticed that they had not documented the current framework
enough. This caused our group to have many difficulties
integrating the framework into our application. We later choose to
scrap the framework and work with JavaScript alone with the help
of jQuery.

3.2 jQuery & Yarn
Because of our use of jQuery to grab JSON data about our visitors
and items, we also developed a need to host our project on a
server. In Google Chrome, fetch requests made for files are
considered “cross-origin” if they are not from the same domain as
the page [14]. Requests to the local filesystem are unsupported.
To get the fetch to work successfully, we used the Yarn package
http-server, which was made for local development of web pages.
Use of Yarn and http-server is shown in Figure 3It allowed us to
serve the project files to Chrome as if we were hosting them.

Figure 3. Process for locally hosting Rooted.

3.3 Finding Appropriate Assets
One of the main features of our application was the use of assets
to set the tone of the game and create a fun environment that
would attract our users to continue to use or application. When we
came up with our initial design we had decided to sketch and get a
rough idea as to how we wanted our characters and inventory to
look. After we completed our designs we went to open-source
game art databases to see if we could find images that were
similar to the sketches we had come up with. After a while of
searching we were not able to find images that resembled the
sketches that we had come up with.

Figure 4. Comparison of asset inspiration and final asset.

We collectively decided to create the assets ourselves using
Adobe Illustrator. This would then allow us to mimic the designs
that we created and continue on with the theme we had wanted to
portray in our application (Figure 4). With all the characters and
inventory items we had this task took quite a bit of time to
complete. Our project team comprised of four people and the
design of our assets was built by one of our team members. This
task took them the majority of the time that we spent working on
the application build, which overall caused our team to slow down
in building efforts.

3.4 Responsiveness
Another challenge that we ran into was making our application
responsive, both in terms of different browser sizes and mobile
views. With our application being a idle game we were concerned
with the format of the game when displayed on smaller screens
such as tablets and cellular devices. We began by testing our
application on various sized devices that our team members had
and came up with a sizing factor that would maintain the appeal of
our application while also allowing for easy navigation of the
store and inventory log that users had access to. We solved the
issue of mobile responsiveness by simple using media queries to
display a different type of layout depending on the width of the
screen. However, a more long term solution would be to simply
develop this app through Unity or another game development
platform so it can be specifically tailored for mobile.

Another issue with responsiveness is shown in Figure 5 below.
We were using absolute positioning at first for easy layout, but the
orange circles shifted away from their relative positioning on the
background image.

Figure 5. Example of a responsiveness issue found in early
prototypes.

4. DESIGN SYSTEM & MOTIVATION
In order to make an appealing game that would be accessible to a
wide audience, our team decided to make the garden display the
main focus of the interface. To bring the focus to the garden, we
made the inventory/store menu collapsible. We used a
drawer-style menu for listing the items in the inventory and store
so that they could be easily browsed by the player. The menu

itself was made with compact spacing so that more screen space
could be allocated to showing the garden.

Figure 6. Collapsed state of Inventory/Store menu.

Figure 7. Five minute timer counting down.

The timer is placed in the top left position so that it is unobtrusive
during gameplay. Once the five minute timer finishes, a
semi-opaque black overlay is placed over the screen and the
25-minute timer begins. This interaction indicates to the user that
they must begin their productive cycle again, however, the game
will still continue to run in the background.

Figure 8. Semi-opaque 25 minute overlay.

4.1 Control Scheme
The control scheme for our system is an intuitive drag-and-drop
by mouse. Both the inventory items and the garden slots act as
large targets for mouse clicking. The decision to maximize click
areas allowed for faster item placement [5]. Unoccupied garden
slots display an orange disc to show players that an item can be
placed (Figure 10). By doing this, we allow the player to check on
the status of the garden at a glance, without needing to read text.
To return an item to the inventory, the player only has to double
click it in the garden. The motivation for this interaction was to
shorten the time it takes for the player to rearrange their garden.
Since the edition period only lasts for 5 minutes, we wanted to
make sure that players would be able to create their arrangement
and move on to completing their work.

 Figure 9. A single inventory item, where the image acts as a

click-and-drag target.

Figure 10. Collection of drag-and-drop targets showing open
slots in the garden.

4.2 Visitor Spawn Rate
The spawning of visiting animals was designed in order to give a
sense of progression. Every five seconds, the game chooses a
random garden slot and attempts to spawn a visitor. The visitor
will fail to spawn if the slot is unoccupied with a decoration, or
the decoration already has a visitor. This makes the game more
appealing because it adds an element of chance. It also
incentivizes the player to place more decorations in the garden to
increase the odds of successful spawns. A chain of successful
spawns can give the player a chance to progress quickly, while the
overall game progress is still slow due to the maximum spawn
rate of 1 visitor per 5 seconds.

4.3 Visual Style
The visual style of the game was designed to be soothing, using
muted colours for the background and visitors to provide a
relaxing experience. The colours of the inventory and store
buttons are the same muted shade of orange for consistency.
There are also icons in addition to the word labels for each button
to be explicit about a button’s purpose. We chose a variety of
garden visitors to illustrate and developed animations for the
visitors when they spawn. Idle animation occurs when an object is
not being controlled and it adds interest to the screen in a game
like ours.

There were several elements that we had planned before
development to implement. In terms of visitors, we had listed:
birds, bees, frogs, snails, worms, and snakes because they are
common garden visitors. For the objects that the player can buy,
we thought of bird feeders, potted plants, seeds, koi pond, and
water fountain. One easy way to quickly produce more objects is
to change the colours of the objects or minor details and advertise
them as different options to buy.

4.4 Code Implementation
The implementation of the game was done in HTML5, CSS3, and
JavaScript. We also used Yarn to manage our dependencies. We

took advantage of native HTML5 support for mouse actions and
click-and-drag to simplify programming for user interactions.

4.4.1 Front-end Implementation
We created the inventory objects and store objects with simple
<div> tags and styled them into cards with CSS. We kept a
consistent styling for all of the buttons and cards. The background
image is set to a static image that we lay orange drop-points. Each
object, both visitors and garden items, are images or GIFs that we
designed and rendered in the HTML with the tag.

4.4.2 Database Implementation
One library feature we used in JavaScript was jQuery’s
getJSON(). The use of JSON for listing decoration and visitor
properties was key to keeping our game dynamic and easy to
expand. Anytime we want to implement a new visitor or item, we
simply create a new entry in the JSON files hosted on the server.
When a user loads the game, their browser will fetch the JSON
files using Ajax and use the information to populate a list of items
and visitors. The JSON files contain information such as item
costs, descriptions, paths to art assets, and names.

The game begins when all of the content in the html <body> tags
is loaded. The startGame() function initializes some global values,
calls the JSON parsing, and begins the main game loop. From
there, a function mainLoop() allows one update every 1000
milliseconds. This format worked well because we wanted to have
the mouse inputs handled by the HTML rather than using
JavaScript event listeners. The game also did not need to be
redrawn very often because there were not complex animations or
physics involved; the visitors are animated using GIFs.

4.4.2.1 User Money
User money is tracked as a global variable. Whenever a user
attempts to buy an item, the game logic checks the item cost
against their total currency. If the user has enough money, the
count of the item in their inventory is incremented and their total
money is decremented according to the item cost. If the user does
not have enough money, the game alerts the user and no
transaction is made.

4.4.2.2 Inventory & Store Objects
The item JSON file is used to populate an array of every item
possible. Each entry in the array represents a kind of item the
player can purchase and use, and includes variables representing
how many instances of the item the player owns (which is
initialized to zero), the item cost, and a general description about
what the item is.

Whenever a player attempts to place an item from their inventory
onto the board, the game logic checks the amount of the item in
their inventory. If it is greater than zero, they are allowed to drag
the item onto an open spot in the garden. Doing this will
decrement the amount in their inventory by one. No action will
occur if the number of items they are trying to drag onto the
screen in their inventory is equal to zero.

Whenever a player double clicks a placed item, the game logic
clears it from the garden and increments the count of the item in
the players inventory.

4.4.2.3 Visitor Objects
Visitors are also kept in an array, which keeps track of
information such as the value of the visitor, whether the visitor is

present in the garden, if the visitor is allowed to spawn, and what
type of visitor it is. The value of the visitor is the amount of
money it gives to the user if it spawns. This game mechanism was
designed so that the user is rewarded for putting down objects and
is incentivized to buy more. The type of visitor is randomly
chosen from an array of four different types of visitors: frog,
rabbit, duck, or butterfly. The visitor object works closely with the
inventory objects to determine whether a visitor can spawn or not.
When there are no objects placed in the garden, no visitors may
spawn. Once we add it to an array of “available” spaces. Every
1000 ms, the game will randomly try to generate a visitor on an
available space. This controls the speed at which the visitors
generate so there is not an overwhelming amount, nor a very
sparse amount of visitors.

5. DESIGN PROCESS
Our team began developing the idea of our game using in-person
meetings. We weighed initial ideas based on feasibility and
originality. As we began to create and improve prototypes, we
relied on online services such as GitHub and Messenger to
coordinate the implementation.

5.1 Game Mechanics
Our team started by designing the game mechanics for Rooted.
Once we had decided on the necessary menus, we experimented
with placements and menu types. We decided on a single menu
location that would have an inventory and store tab.

We initially planned to have a garden theme with seasonal cycles
that would change the artwork for the game. In the end, we chose
to use a single theme to reduce the amount of assets that was
required. With our theme decided, and a list of desired assets, we
started producing the art.

5.2 Frameworks
Meanwhile, we explored different game frameworks for
HTML5/JavaScript. The one we initially decided on was Phaser 3.
We expected that a gaming framework would make object
interactions with the mouse easier to implement, as well as the
rendering and triggering of game events. However, the most
recent version of Phaser (3.16) did not have much documentation.
We also discovered that the focus of most of the framework
functions was related to keyboard controls, animations, and
physics. Since our game didn’t use most of this, we decided to
move from Phaser to a plain HTML/CSS/JavaScript approach.

5.3 Final Implementation
With the plan for implementation decided, we worked to
separately implement the game display, mouse interactions, game
clock cycle, and JSON parsing. In the final version, we combined
all the parts to create event triggers for buying and placing items,
as well as random visitor spawns. We experimented with the cost
values for items and the spawn rates for visitors to solidify a sense
of progression in the game that would allow users to feel invested
for extended periods of time.

6. EXISTING COMPETITORS
There are numerous mobile apps and websites that partially
overlap with the purpose of Rooted. The two main categories of
these apps are existing Pomodoro Technique timer programs, as
well as idle collecting games.

6.1 Pomodoro Apps
Applications that implement Pomodoro timers are not new; there
are many mobile applications, along with web browser extensions,
that do this already [8]. However, the majority of these apps are
simple timers integrated with to-do lists and charts. In spite of the
lack of diversity in Pomodoro apps, the technique itself has still
proven to be effective in increasing productivity and it is
important to see how it is currently being implemented. We
looked at two popular models, Focus Booster and Focus Keeper
Pro as case studies into existing products.

6.1.1 Focus Booster
Focus Booster is a Pomodoro timer that automatically records
sessions into a file. Its primary purpose seems to be to replace
timesheets in the workplace. It creates bar graphs and pie charts
based on your productivity patterns. It claims to create better work
habits by helping you visualize your progress and find a work/life
balance.

6.1.2 Focus Keeper Pro
Focus Keeper Pro is another Pomodoro timer. Its main feature is
that it shows charts generated based on sessions over the past 30
days (Figure 11). It allows you to customize focus sessions, goals,
and the interface itself. The basic steps listed in their manual are:
choosing a task to complete, setting a 25 minute timer, working
until the timer elapses, and then taking a 5 minute break.

 Figure 11. Interface of Focus Keeper Pro, showing the timer,
trends graph, and settings

6.2 Idle & Collecting Games
On the other hand, there are numerous idle and collecting games,
but many are addictive. Idle games play themselves without user
being present, while collection games allow users to gather game
objects to create an inventory or accumulate points. We believed
that idle-collecting games would be a good complement to the
off-time in the Pomodoro technique because some games have a
relaxing quality to them that we wanted to tap into.

6.2.1 Cookie Clicker
One in particular that we looked at is called Cookie Clicker. The
premise is to click a button to generate cookies. Once you have
generated enough cookies, you can buy upgrades to make
generating cookies easier. However, there is an increase in
playtime because in the beginning, you have to constantly click
the button to generate enough cookies. Once you have a steady
mechanism for generating cookies, you have to monitor when you
have enough to buy upgrades (Figure 12). This endless cycle is
what makes collecting games too addictive and ultimately,
time-consuming. Additionally, these types of games can be

stressful if the player does not keep up with the latest updates,
which further feeds into their addiction.

 Figure 12. Cookie Clicker game interface mid-game after
collecting numerous items

We did think it was important to see how Cookie Clicker laid out
their application, seen in the figure above, because it is also a
browser game. Because this is such a popular game, we wanted to
analyze why it became popular and how it utilizes the interface to
maximize user play-time.

6.2.2 Neko Atsume: Kitty Collector
Neko Atsume is an idle-collecting game that served as the
inspiration for our product. The general idea of this game is to put
down food for cats to visit, with over 60 cats to collect overall.
These cats are all unique in name, personality, and appearance.
The simplicity of the game makes it accessible to people
worldwide. Not only is its art style cute, but it is also laid back. It
is unobtrusive because users usually check in for less than 5
minutes as cats spawn. We wanted to emulate this casual playstyle
that makes users relaxed when playing and combine it with the
Pomodoro technique.

 Figure 13. (Left) Inventory and Store in Neko Atsume;
(Right) Catalog of visitors both obtained and yet to obtain

In Figure 13 above, the inventory and store are combined in Neko
Atsume. It seems that other than replenishable food, you can only
have 1 quantity of an object, such as the Rubber Ball (Red). We
have to keep in mind, this game is optimized for mobile play and
game controls rely heavily on taps instead of clicking or dragging.
On the right side of the figure, we see the catalog of visitors,
which is essentially what the user is trying to “collect” and in this
situation it is cats. By hiding the ones that the user has not

encountered, there is an element of surprise or excitement when a
new cat is obtained. The user is also able to obtain more
information about a specific cat once it appears in their catalogue.

7. FUTURE IMPLEMENTATION
In this section, we will discuss potential improvements if we were
to develop Rooted into a full product. Given the constraints of
only working on the project for a few months, there were only so
many features or art assets we could implement. Additionally, we
never purchased a host for Rooted and have been developing it by
running a local server on our own computers.

7.1 Stretch Goals
Once we had the basic framework designed, we also listed several
stretch goals we wanted to complete if time allowed. This
included parts of the visual system, such as changing the colours
and adding more visitors. Other features we want to implement
include having a wait time to grow special plants. Instead of
buying already grown objects, instead the user could buy “seeds”
to customize their garden and have the entire experience. These
time features could even be expanded into keep track of the date
and having different seasons available to the user, such as
summer, fall, winter, and spring. Because of these time-dependent
additions, it would also be nice to design browser notifications to
alert the user when their 25-minutes of work has elapsed or when
a special event has occurred.

7.2 Expanding Game Mechanics And
Interaction
To improve our application for the next design iteration we have
considered to implement various features for users to interact
with. Currently, users have access to 6 items that they can
purchase in the plant store. With our next iteration of updates we
would like to add 4 more plant items for users to choose from.
The plant types that we would add are cactus, strawberry, grape
and fern. These inventory items would be hand-designed in Adobe
Illustrator to maintain the unique theme of our application. The
addition of more items added to the store will incentivise users to
maintain their progress and keep up with their goals.

Figure 14. Concept art for a mountain lion
(​Puma concolor couguar​).

Additionally, we could relate the animal visitors to the types of
plants to add an educational aspect to the game. As users place
new items, animals that have a relation to that kind of item could
show up, such as panda bears being attracted to bamboo plants or
koalas being attracted to eucalyptus trees.

7.3 Cross-Platform Compatibility
Currently our application only runs in web browsers, but with our
next redesign we would like to make our application compatible
with iOS and Android. By creating our application in React
Native we could turn our game into a mobile application. This
would allow users to maintain their progress and achieve their
weekly goals on the go. In order to complete this implementation
we would need to create our application in React Native instead of
vanilla JavaScript. The benefits of this would be simpler
distribution of the game, as well as access to another user group.

7.4 Backend Development & Storage
Another feature that we would like to implement is a user login
system that would allow users to save their progress and create
weekly goals. This would allow users to keep track of their
progress and hold themselves accountable with the time they have
to get their tasks done. When each user has a account they can
then interact with other users and give their current inventory to
their friends. Friends can hold each other accountable and ensure
that their friend group is maintaining their progress. We would
then also be able to provide feedback to the user in the form of
charts and graphs, similar to a stats page that the other Pomodoro
apps offer.

If user progress was persistent, we could also implement online
trading similar to the Steam Community Market [3]. Since we are
aiming to avoid addicting monetization methods, we would likely
forgo the use of real money and instead only allow users to barter
items or use their in-game currency. The introduction of real
money would give us perverse incentives to attempt to “hook”
players into the game and rely on so-called “whales” to generate
large amounts of revenue from a small percentage of the player
base [13]. Additionally, it is possible we would run into legal
issues with the trademark holder of the Pomodoro Technique if
we began monetizing Rooted.

8. EVALUATION PROCEDURE
Our team thinks that testing is valuable for our game because we
aim to appeal to a wide population of users and seek to make a
product that actually solves the two problems we have identified.
Running user studies to test usability of our project would give us
better understanding of the interactions we designed to influence
future updates and improvements. As the game currently stands, it
is more of a high-fidelity prototype than a polished final product.
If we were to continue development, we would need to figure out
areas of the interaction design to focus on.

We would use user testing to determine future improvements and
current performance of our game by using studies to get evidence
of strengths and shortcomings in our current design. In order to do
this, we would design the studies in a way that isolates specific
variables in the design. We would test different versions against
our current (baseline) version, as well as other competitor
Pomodoro apps and idle games.

One of the most important features of the game is the rate at
which the game progresses. This rate includes visitor spawn rate
and how the user gains and spends money. This feature is
important to test because if the rate is too slow, it will not
motivate people to continue playing the game because there is not
enough reward for the amount of effort they put in. If it is too fast,
the game itself will not be able to keep up with the user because

they will run out of new items quickly, further prompting the user
not to play anymore.

The subjects we would focus on the most would be university-age
students because they are under the most stress for studying. We
would consider various educational background factors such as
year of study and area of study. It would be useful to search for
users that have specific experience with Pomodoro Apps or the
Pomodoro Technique in general. Since we are at Texas A&M,
there would likely be enough students nearby to conduct the
studies locally.

8.1 Gathering Quantitative Data
The easiest way to gather lots of qualitative data points on user
experience would be to host a live version of the game online and
attach a survey for users to submit. The surveys could give
information about appeal, user demographics, and level of
interest. Additional quantitative data could be gathered by
observation of subjects in natural environments using the game to
study. While subjects would have to be informed beforehand,
there could be a way to run field tests in environments such as
private study rooms to observe the effect of common distractions
on users of game.

In our observation of users in field tests, we would aim to find
frequent users of the Evans Library, Annex, and SCC. Although
this means that there would be less control over environment
variables, we could get a much better understanding of how
common everyday distractions affect the performance of our game
as a productivity tool. Ideally, there would be no setup needed.
The observers could arrive at the same time as the users in the
study settings and record their interactions using the game to help
study.

8.2 Gathering Qualitative Data
If we were to publish our game online, social media could be a
good way to gather qualitative data, using open codes to break
down tweets and other posts. Our team could establish a social
media presence for Rooted, simplifying the gathering of reviews
and user testimonies.

There are also sites which may host our game for wider audiences,
such as itch.io and html5games.com. We could gather comments
from users and analyze them as well.

From gathered qualitative data, we would seek to understand
suggestions and feedback not reached through our quantitative
data gathering. We would use that understanding to improve the
usability and the gameplay of Rooted.

9. ACKNOWLEDGMENTS
Our thanks to Dr. Richard Furuta for providing project feedback
and guidance during the development processes. Also to Aaron
Lee for being an invested and knowledgeable TA throughout the
semester. Additional thanks to services GitHub and Google Docs
for allowing easy collaboration on this project.

10. REFERENCES
[1] Addictions.com. 2019. A New Addiction On The Rise:

Mobile Game Addiction. Retrieved from
https://www.addictions.com/blog/a-new-addiction-on-the-ris
e-mobile-game-addiction/.

[2] Cirillo, Francesco. 2019. The Pomodoro Technique.
Retrieved from
https://francescocirillo.com/pages/pomodoro-technique.

[3] Conditt, Jessica. 2012. Steam Community Market enables
buying and selling with Steam Wallet. (December 2012).
Retrieved from
https://www.engadget.com/2012/12/12/steam-community-ma
rket-enables-buying-and-selling-with-steam-wal/.

[4] Elgan, Mike. 2017. Smartphones make people distracted and
unproductive. (August 2017). Retrieved from
https://www.computerworld.com/article/3215276/smartphon
es-make-people-distracted-and-unproductive.html.

[5] Fitts, P. M. (1954). The information capacity of the human
motor system in controlling the amplitude of movement.
Journal of Experimental Psychology, 47(6), 381-391.
http://dx.doi.org/10.1037/h0055392.

[6] Hafer, T.J. 2018. The legal status of loot boxes around the
world, and what's next in the debate. (October 2018).
Retrieved from
https://www.pcgamer.com/the-legal-status-of-loot-boxes-aro
und-the-world-and-whats-next/.

[7] Kelly, Makena. 2019. How loot boxes hooked gamers and
left regulators spinning. (February 2019). Retrieved from
https://www.theverge.com/2019/2/19/18226852/loot-boxes-g
aming-regulation-gambling-free-to-play.

[8] Kennedy, Sean. 2018. The 10 Best Pomodoro Timer Apps to
Boost Your Productivity. (September 2018). Retrieved from
https://zapier.com/blog/best-pomodoro-apps/.

[9] Kibble.net. 2016. What Are Idle/Incremental Games? (May
2016). Retrieved from
https://www.kibble.net/blog/index.php/2016/05/23/what-are-
idleincremental-games/.

[10] Sullivan, Bob. 2015. Memo to work martyrs: Long hours
make you less productive. (January 2015). Retrieved from
https://www.cnbc.com/2015/01/26/working-more-than-50-ho
urs-makes-you-less-productive.html.

[11] Sultan A. Alharthi, Olaa Alsaedi, Zachary O. Toups, Joshua
Tanenbaum, and Jessica Hammer. 2018. Playing to Wait: A
Taxonomy of Idle Games. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI
'18). ACM, New York, NY, USA, Paper 621, 15 pages. DOI:
https://doi.org/10.1145/3173574.3174195

[12] Tagliaferri, Lisa. 2016. How To Work with JSON in
JavaScript. (December 2016). Retrieved from
https://www.digitalocean.com/community/tutorials/how-to-w
ork-with-json-in-javascript.

[13] Takahashi, Dean. 2014. Only 0.15 percent of mobile gamers
account for 50 percent of all in-game revenue (exclusive).
(February 2014). Retrieved from
https://venturebeat.com/2014/02/26/only-0-15-of-mobile-ga
mers-account-for-50-percent-of-all-in-game-revenue-exclusi
ve/.

[14] Xenos. 2018. CORS is Layered over HTTP. (July 24, 2018).
Retrieved from https://security.stackexchange.com/a/190269.

About the authors:

Ledet Awano is a Junior Computer Science major at Texas A&M
University. She is currently pursuing a business minor and plans
to attain her MBA and work as an engineering manager within the
next 4 years. This summer she will continue learning as a software
engineering intern at Linkedin where she will be working on the
Premium Subscriptions team in Sunnyvale, California.

Grace Fan is a Junior Computer Science major at Texas A&M
University. She is currently pursuing an Art minor and hopes to
work as a User Experience Designer after graduation. She has had
previous experience working at Sandia National Laboratories and
will continue her work experience at Credera this upcoming
summer.

Brandon Neff is a graduating Computer Engineering major at
Texas A&M University. After graduation, he will be working as a
software engineer developing embedded software at Collins
Aerospace in Cedar Rapids, Iowa where he previously interned.
His hobbies and interests include playing tennis, listening to
podcasts, and watching Star Trek.

Charles Wong is a Computer Science student at Texas A&M
University. His coursework in Computer Science follows an
emphasis in Human-Computer Interaction, as well as a Minor in
Art (New-Media). He currently is searching for summer research
opportunities in HCI and aims to enroll in a graduate program
following his final 2 semesters of undergraduate study. During
breaks from school, Charles resides in San Diego, California.
(people.tamu.edu/~charleswong)

